Colloquium- Prof. Renee Frontiera
Prof. Renee Frontiera- University of Minnesota, Northrop Professor, Director of Graduate Studies for Chemical Physics, Department of Chemistry
Biography: Renee R. Frontiera is the Northrop Professor of Chemistry at the University of Minnesota. Her research group uses Raman spectroscopic techniques to examine chemical composition and chemical reaction dynamics on nanometer length scales and ultrafast time scales. She received her Ph. D. in 2009 from the University of California – Berkeley in Richard Mathies’ group, and did her postdoctoral research with Richard Van Duyne. Her research group at the University of Minnesota was founded in 2013, and she is the recent recipient of an NSF CAREER award, a DOE Early Career award, and an NIH Maximizing Investigators’ Research Award (MIRA). She was named one of Chemical & Engineering News’s “Talented 12”, and has won a Journal of Physical Chemistry Lectureship, the American Physical Society’s “Future of Chemical Physics” lectureship, and a Camille Dreyfus Teacher-Scholar award.
https://cse.umn.edu/chem/renee-frontiera
Seminar title: "Raman Spectroscopic Probes of Plasmon-Molecule and Polariton Interactions"
Abstract: "Photonic materials, including plasmons and polaritons, are highly promising catalysts for driving energetically unfavorable chemical reactions with sunlight, due to their large optical cross sections and ability to modify potential energy landscapes. However, the efficiencies of most plasmon-driven and polariton-driven processes are quite low, likely due to the lack of mechanistic understanding of the underlying physical processes. Here I’ll discuss our use of Raman spectroscopies to advance our fundamental understanding of these systems. First, I’ll describe our development of ultrafast surface-enhanced Raman spectroscopy (SERS) to probe the contributions of plasmon-generated hot electron transfer, heating, and vibrational energy transfer on timescales relevant to photocatalysis. Second, I will talk about our efforts in mapping out reaction coordinates in polaritonic systems, quantifying the degree of mode-specific activation. These efforts in developing a fundamental understanding of polariton and plasmon-mediated processes in molecules will ultimately aid in the rational design of cost-effective photonic materials capable of driving industrially relevant chemistries using solar radiation."
Individuals with disabilities are encouraged to attend all University of Iowa–sponsored events. If you are a person with a disability who requires a reasonable accommodation in order to participate in this program, please contact in advance at